Stress and Strain




Stress and Strain

Deformation or strain is the direct result of the
forces applied: these may be body forces (e.g.,
gravitational force), which act on a volume, or
surface forces (e.g., the forces applied to the
edge of a plate, or a tectonic fault). Surface
forces are measured as the stress, or force per
unit area. Strain is measured as relative
changes in the length of lines (stretches) and
as changes in angle (shear strain).




How do we study stress and strain?
Continuum Mechanics

iIs a branch of physics and engineering that models materials
as continuous media, ignoring their discrete particulate nature to study their
deformation and motion. It uses the principles of classical mechanics and
conservation laws (mass, momentum, energy) to develop mathematical models that
describe the behavior of solids and fluids under forces.

In order to understand the processes that shape our planet’s surface geology and its
evolution over time, and to formulate a theory that can link observations to dynamics,
we need a description of both deformation and driving forces. Continuum mechanics
provides such a framework!



Continuum mechanics

Treating the material as a
continuum, namely a substance
that behaves according to some
smooth, average behavior, is often
more convenient and useful than
focusing on the micro-scales. For
example, consider the tectonic
deformation in Tibet as seen from
the style of earthquake faulting
and geodetic measurements of
crustal velocities.
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2 ways of describing motion:
Lagrangian vs Eulerian description

If we consider velocities in a fluid moving about, then we are often interested in
transport of properties, such as temperature anomalies in convection. There are two
main ways to describe how a continuous medium (fluid or rock) moves and deforms:
Lagrangian description: we follow individual material particles as they move.

Eulerian description: we stay at fixed points in space and watch material flow past.

Both viewpoints describe the same physics, but they answer slightly different
questions.



Lagrangian reference frame

In this frame, we take the point of view of going along for the ride on a fluid parcel
that moves through a fixed reference frame, the markers on the sides of the river
which pass by us while we sit on a boat.

In the Lagrangian view, we “tag” each material particle by its initial position X at

time t = 0. We then follow that particle as it moves. Intuitively: we paint dots on a rock
and track where each dot goes and how distances between dots change. This is very
natural for describing finite strain and the history of deformation of a given piece of
rock.



Eulerian reference frame

In the Eulerian view, we fix a coordinate system in space and do not move with the
material. We describe fields as functions of position and time, e.g. a velocity field.

At each fixed point in space, we ask: “what is the velocity / temperature / stress here,
now?” Intuitively: we put a measuring station at a fixed location and watch different
pieces of rock or fluid flow past it. This is the standard viewpoint for PDEs and
numerical models, where fields are defined on a fixed grid.
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Stress

Stress is force acting across an internal surface inside a material. It is not something
applied from outside — it exists within the material (for example, rocks).

The force across the plane has two components:

Normal stress (0,): pushes or pulls perpendicular to
the plane ("-;"

‘.Zl
Shear stress (1): acts parallel to the plane, trying to /
slide one side past the other

Stress always depends on the orientation of the plane,
so a single number cannot describe it. This directional

dependence is the reason we will need a tensor, but
not yet, first understand the physical idea.



Stress

Why a single number is not enough — stress depends on direction

If you apply the same force to a block (or just by
gravity), stresses on different planes are not the
same. A horizontal plane might feel only normal
stress, a 45° plane might feel mostly shear stress.
To fully describe the stress state at a point, we
must know:

When stress is acting on three perpendicular faces
in three perpendicular directions (3D), this requires
nine components.

These nine components form the stress tensor, a
compact way to track how force acts on any plane.
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Stress

Second-rank tensor

Uij =

011
0921
031

012
0992
032

T3
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(i,7=1,2,3)
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Invariants (quantities independent of the coordinate system):

- Firstinvariant (trace): [} = tr(o) = 011 + 092 + 033 = Ok

- Second invariant (magnitude, for a deviatoric tensor):

Sij = Oij —

1
3

—0Okk 0ij,
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Stress

In continuum mechanics compressional (extensional) stress are negative (positive).
Pressure is positive under compression. Stress is measured in Pa = N/mZ. The stress
tensor contains the components of the tractions acting on the element surfaces. The
first index indicate the direction of stress, the second the normal to the stressed

surface
N/ N/ DY
O O
XX Xy Xz
O, = o, |lo
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Pressure is equal to the mean normal stress:

2D: P=—tr(0)=_ak’< =_Gxx+ayy
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Strain

Strain describes the change in relative position of material points that make up a body.
The lllustration shows elongation, or normal strain.
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Strain

Illustration of shear strain. The original square, fixed at the lower left corner, is pulled
diagonally, leading to shearing type displacements ux which increase with vy, tilting the
left, originally vertical, edge of the object at an angle B, as well as uy displacements

which increase with x, leading to the bottom, originally horizontal, edge being inclined
at angle a.

y=a+p




Strain — derivation of the infinitesimal strain
Dsivaton of fhe infinitertmal Fhain
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Strain — derivation of the infinitesimal strain
Dsivaton of fhe infinitertmal Fhain

"' :
/ ..
o o '(") X+Mx (8) We can use these equations to define the normal
ate strain in x-direction, assuming infinitesimally
small 0x0 and small displacements, and in analogy
9-/---- - iny, and define:
]
% :' \ Ouy Ouy,
x3&oomoo o xs fr0 = o A w = Oy
v x4+ ofxo
—_—



Strain — derivation of the infinitesimal strain
Dsivaton of fhe infinitertmal Fhain
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Elasticity

Hooke’s Law: From stress-strain to rock elasticity ) 4y

« Hooke’s law describes how a material
deforms elastically under applied stress.

* Inthe elastic regime, strainis
proportional to stress.

* Thisrelationis the starting point for
understanding elastic waves, flexure,
and many geophysical processes.



Elasticity

Stress and strain in the elastic regime

Consider a bar with cross-section area A
and length LO. Apply a force F along its axis.
The bar extends by AL.
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Elasticity Er—L—p
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In the elastic regime, many solids obey a
linear relationship between stress and A . 7
strain. E is Young’s modulus (stiffness). '
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* Large E: materialis stiff, small strain for a

. X E
given stress. 'i
. . Clrh
 Small E: material is compliant, large Tepoon

strain for a given stress.
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Physically: E measures how much stress is needed to produce a given strain.



Elasticity

Poisson’s Ratio:
3D Effects of 1D Loading

Under uniaxial tension, a bar extends
in one direction and contracts in the
perpendicular directions.
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Elasticity

Relating elastic parameters
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Strain of tectonic plates

The Pacific plate is moving at ~44 mm/yr with respect to North America. Assume that
deformation is accommodated in a 150 km wide zone. What is the strain-rate in the
shear zone? State your assumptions
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Elasticity

What is the difference between young's modulus and shear modulus?

Short version: both measure stiffness, but in different “directions”.
Young’s modulus: stiffness in extension/compression (normal loading).

Shear modulus: stiffness in shear (sideways distortions).



Elasticity

Why Elasticity matters in Geophysics

Elasticity gives us the first-order rule for how materials respond to small forces: if you don’t
understand elastic stress-strain, you can’t make sense of strength, failure, or long-term
ductile behavior either. It’s the baseline model everything else deviates from.

In geophysics, seismic waves are just tiny elastic disturbances propagating through rocks; the
elastic moduli directly control P- and S-wave speeds, so seismology is “applied Hooke’s law.”

Elastic deformation controls how the lithosphere bends under loads (ice sheets, volcanoes,
mountain belts), how stress builds up on faults before earthquakes, and how the crust

rebounds after events like deglaciation.

Elasticity is also what lets us invert observations for structure: by measuring wave speeds,
deformations, and flexure, we can infer the elastic properties (and thus composition,
temperature, and mechanical state) of rocks deep inside the Earth, where we will never drill.



Deviatoric stress

Stress can be divided into a
deviatoric and an isotropic
components. The deviatoric
components produce flow,
the isotropic components
(i.e., pressure) compaction or
dilation.
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Normal deviatoric stress: o, =0, + P;
Shear deviatoric stress: 0, =0,=0,=0,
Please, show that tr(Gi’j) =0

Second invariant of deviatoric stress tensor :
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Deviatoric stress

Stress can be divided into a
deviatoric and an isotropic
components. The deviatoric
components produce flow,
the isotropic components
(i.e., pressure) compaction or
dilation.
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Second invariant of deviatoric stress tensor :
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Mohr circle

Up to now, we have described stress using
tensors and invariants. But a rock element
“feels’ stress on all possible planes, not
only the coordinate axes. The stress tensor
contains this information, but it is not
obvious how: normal stress and shear
stress vary as a function of plane
orientation.

A transformation of coordinates can
compute these values, but Mohr’s circle
lets us see the transformation
immediately.
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Mohr circle
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Recap



This cube represents a tiny piece of rock. We are
looking at the forces acting on each face of the cube.

033

Each face has:
1) Anormal direction (perpendicular to the face)

2) forces that can act along different directions on
that face.

Gij means:

i = direction of the force
Jj=direction of the normal to the face



Example: why o, is called o,

033

Point to the cube.

The face labelled 1 is the face whose normal points
along x,.

On that face, there is a force pointing in direction x,

So:
face normal > 1
force direction~> 3
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Why the diagonal terms look simpler (0,,, G,,, 033)

@ Now connect to intuition:

* 0,,: forceinx, onface normalto x,
0,,: force in x, on face normal to x,
* 0,5 forcein x; on face normal to x,



Translating o,, < oy (left cube = right matrix)

The cube uses numbers (1, 2, 3). The matrix uses letters (x, y, z).
They describe the same directions.

Mapping:

1o X
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Which face am | on, and which way am | pushing?

E/ \ Every stress component answers the question:
L2



Isotropic stress (pressure)

Now imagine squeezing a rock equally from all directions: No preferred
direction, no shear, no shape change, only volume change.

Isotropic
compression

7

This part of the stress is called isotropic stress, or pressure.



Isotropic stress (pressure)

1
P = —30kk (mean normal stress)

Okk = Oga + Oyy + 0., (trace)

The trace itis the sum of the normal stresses
dividing by 3 gives the average

Key physical meaning:

Pressure is the part of stress that is the same in all directions.



Isotropic stress (pressure)

1
P = ——04; (mean normal stress)

3

Okk = Ogy + Oyy + 0., (trace)
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Why pressure acts only on normal components? This is crucial and often
misunderstood. Pressure is directionless. It pushes perpendicular to surfaces. It
does not create tangential forces. Therefore, it cannot produce shear.



Total / deviatoric / Effective stress: definition

Total stress = pressure (isotropic) + deviatoric stress (distortional). Total stress is the
force per unit area acting inside a rock, including both normal stresses (pressure-like)
and shear stresses (all components).

Pressure is the isotropic part of the total stress: the same compressive stress acting
equally in all directions.

Deviatoric stress is the part of the total stress that remains after removing pressure.
Deviatoric stress measures how much stress differs from pure pressure.

Effective stress is the part of the total stress carried by the solid rock framework when
fluids are present. Effective stress is defined as the difference between total stress
and pore fluid pressure.



Mohr circle

So far, we have described stress using
components defined alongthe xand y
axes. But a rock does not know what x
and y are.

But... what is the stress acting on a plane
that is not alighed with x or y?




Mohr circle

So far, we have described stress using
components defined alongthe xand y
axes. But a rock does not know what x
and y are.

But... what is the stress acting on a plane
that is not alighed with x or y?

Inside the rock, there are infinitely many planes at different angles. Pick one plane, tilted at some
angle. On that plane, two things act:

- a normal stress (pushing into or pulling out of the plane)

- a shear stress (trying to make the two sides slide)

The questionis: If | choose a plane at some angle, what are the values of normal stress and
shear stress on that plane?



Mohr circle
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