
Stress and Strain



Stress and Strain
Deformation or strain is the direct result of the 
forces applied: these may be body forces (e.g., 
gravitational force), which act on a volume, or 
surface forces (e.g., the forces applied to the 
edge of a plate, or a tectonic fault). Surface 
forces are measured as the stress, or force per 
unit area. Strain is measured as relative 
changes in the length of lines (stretches) and 
as changes in angle (shear strain).



How do we study stress and strain? 
Continuum Mechanics
Continuum mechanics is a branch of physics and engineering that models materials
as continuous media, ignoring their discrete particulate nature to study their
deformation and motion. It uses the principles of classical mechanics and
conservation laws (mass, momentum, energy) to develop mathematical models that
describe the behavior of solids and fluids under forces.

In order to understand the processes that shape our planet’s surface geology and its
evolution over time, and to formulate a theory that can link observations to dynamics,
we need a description of both deformation and driving forces. Continuum mechanics
provides such a framework!



Continuum mechanics 

Treating the material as a 
continuum, namely a substance 
that behaves according to some 
smooth, average behavior, is often 
more convenient and useful than 
focusing on the micro-scales. For 
example, consider the tectonic 
deformation in Tibet as seen from 
the style of earthquake faulting 
and geodetic measurements of 
crustal velocities.



World Strain Map



2 ways of describing motion: 
Lagrangian vs Eulerian description
If we consider velocities in a fluid moving about, then we are often interested in 
transport of properties, such as temperature anomalies in convection. There are two 
main ways to describe how a continuous medium (fluid or rock) moves and deforms:

Lagrangian description: we follow individual material particles as they move.

Eulerian description: we stay at fixed points in space and watch material flow past.

Both viewpoints describe the same physics, but they answer slightly different 
questions.



Lagrangian reference frame

In this frame, we take the point of view of going along for the ride on a fluid parcel
that moves through a fixed reference frame, the markers on the sides of the river 
which pass by us while we sit on a boat.

In the Lagrangian view, we “tag” each material particle by its initial position X at 
time t = 0. We then follow that particle as it moves. Intuitively: we paint dots on a rock 
and track where each dot goes and how distances between dots change. This is very 
natural for describing finite strain and the history of deformation of a given piece of 
rock.



Eulerian reference frame

In the Eulerian view, we fix a coordinate system in space and do not move with the 
material. We describe fields as functions of position and time, e.g. a velocity field.

At each fixed point in space, we ask: “what is the velocity / temperature / stress here, 
now?” Intuitively: we put a measuring station at a fixed location and watch different 
pieces of rock or fluid flow past it. This is the standard viewpoint for PDEs and 
numerical models, where fields are defined on a fixed grid.



Stress and Strain



Stress
Stress is force acting across an internal surface inside a material. It is not something 
applied from outside — it exists within the material (for example, rocks).

The force across the plane has two components:

Normal stress (σₙ): pushes or pulls perpendicular to 
the plane

Shear stress (τ): acts parallel to the plane, trying to 
slide one side past the other

Stress always depends on the orientation of the plane, 
so a single number cannot describe it. This directional 
dependence is the reason we will need a tensor, but 
not yet, first understand the physical idea.



Stress
Why a single number is not enough – stress depends on direction

If you apply the same force to a block (or just by 
gravity), stresses on different planes are not the 
same. A horizontal plane might feel only normal 
stress, a 45° plane might feel mostly shear stress.
To fully describe the stress state at a point, we 
must know:

When stress is acting on three perpendicular faces
in three perpendicular directions (3D), this requires 
nine components.

These nine components form the stress tensor, a 
compact way to track how force acts on any plane.



Stress
Second-rank tensor

Invariants (quantities independent of the coordinate system):

- First invariant (trace): 

- Second invariant (magnitude, for a deviatoric tensor): 



Stress
In continuum mechanics compressional (extensional) stress are negative (positive). 
Pressure is positive under compression. Stress is measured in Pa = N/m2. The stress 
tensor contains the components of the tractions acting on the element surfaces. The 
first index indicate the direction of stress, the second the normal to the stressed 
surface

σ ij =

σ xx   σ xy   σ xz

σ yx σ yy   σ yz

σ zx σ zy   σ zz

!

"

#
#
#

$

%

&
&
&

Pressure is equal to the mean normal stress:

2D :  P = − tr(σ )
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Strain
Strain describes the change in relative position of material points that make up a body.
The Illustration shows elongation, or normal strain.



Strain
Illustration of shear strain. The original square, fixed at the lower left corner, is pulled
diagonally, leading to shearing type displacements ux which increase with y, tilting the
left, originally vertical, edge of the object at an angle β, as well as uy displacements
which increase with x, leading to the bottom, originally horizontal, edge being inclined
at angle α.



Strain – derivation of the infinitesimal strain



Strain – derivation of the infinitesimal strain

We can use these equations to define the normal 
strain in x-direction, assuming infinitesimally 
small δx0 and small displacements, and in analogy 
in y, and define:



Strain – derivation of the infinitesimal strain

How about the shear angles α, β, and γ?



Elasticity

Hooke’s Law: From stress–strain to rock elasticity

• Hooke’s law describes how a material 
deforms elastically under applied stress.

• In the elastic regime, strain is 
proportional to stress.

• This relation is the starting point for 
understanding elastic waves, flexure, 
and many geophysical processes.



Elasticity

Stress and strain in the elastic regime

Consider a bar with cross-section area A 
and length L0. Apply a force F along its axis. 
The bar extends by ∆L.



Elasticity

Hooke’s Law in 1D

In the elastic regime, many solids obey a 
linear relationship between stress and 
strain. E is Young’s modulus (stiffness).

• Large E: material is stiff, small strain for a 
given stress.

• Small E: material is compliant, large 
strain for a given stress.

Physically: E measures how much stress is needed to produce a given strain.



Elasticity

Poisson’s Ratio: 
3D Effects of 1D Loading

Under uniaxial tension, a bar extends 
in one direction and contracts in the 
perpendicular directions.



Elasticity

Relating elastic parameters

Shear modulus, also known 
as the modulus of rigidity, 
is a measure of a solid 
material's resistance to 
deformation when a force is 
applied parallel to its 
surface. It is defined as the 
ratio of shear stress (force per 
unit area) to shear strain (the 
amount of deformation).



Strain of tectonic plates
The Pacific plate is moving at ∼44 mm/yr with respect to North America. Assume that 
deformation is accommodated in a 150 km wide zone. What is the strain-rate in the 
shear zone? State your assumptions



Elasticity

What is the difference between young's modulus and shear modulus?

Short version: both measure stiffness, but in different “directions”.

Young’s modulus: stiffness in extension/compression (normal loading).

Shear modulus: stiffness in shear (sideways distortions).



Elasticity

Why Elasticity matters in Geophysics
• Elasticity gives us the first-order rule for how materials respond to small forces: if you don’t 

understand elastic stress–strain, you can’t make sense of strength, failure, or long-term 
ductile behavior either. It’s the baseline model everything else deviates from.

• In geophysics, seismic waves are just tiny elastic disturbances propagating through rocks; the 
elastic moduli directly control P- and S-wave speeds, so seismology is “applied Hooke’s law.”

• Elastic deformation controls how the lithosphere bends under loads (ice sheets, volcanoes, 
mountain belts), how stress builds up on faults before earthquakes, and how the crust 
rebounds after events like deglaciation.

• Elasticity is also what lets us invert observations for structure: by measuring wave speeds, 
deformations, and flexure, we can infer the elastic properties (and thus composition, 
temperature, and mechanical state) of rocks deep inside the Earth, where we will never drill.



Deviatoric stress
Stress can be divided into a 
deviatoric and an isotropic 
components. The deviatoric 
components produce flow, 
the isotropic components 
(i.e., pressure) compaction or 
dilation.
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Normal  deviatoric stress :  !σ ii =σ ii +P; 
Shear  deviatoric stress :  !σ ij = !σ ji =σ ij =σ ji

Please, show that  tr !σ ij( ) = 0
Second   invariant  of  deviatoric stress tensor :
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Deviatoric stress
Stress can be divided into a 
deviatoric and an isotropic 
components. The deviatoric 
components produce flow, 
the isotropic components 
(i.e., pressure) compaction or 
dilation.
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Please, show that  in 2D⇒ !σ xx = − !σ yy

Second   invariant  of  deviatoric stress tensor :

!σ II = 1
2 !σ ij

2 = !σ xx
2 + !σ xy

2



Mohr circle
Up to now, we have described stress using 
tensors and invariants. But a rock element 
“feels’’ stress on all possible planes, not 
only the coordinate axes. The stress tensor 
contains this information, but it is not 
obvious how: normal stress and shear 
stress vary as a function of plane 
orientation.

A transformation of coordinates can 
compute these values, but Mohr’s circle 
lets us see the transformation 
immediately.



Mohr circle



Recap



This cube represents a tiny piece of rock. We are 
looking at the forces acting on each face of the cube.

Each face has:

1) A normal direction (perpendicular to the face)

2) forces that can act along different directions on 
that face.

σᵢⱼ means:

i = direction of the force
j = direction of the normal to the face



Example: why σ₃₁ is called σ₃₁

Point to the cube. 

The face labelled 1 is the face whose normal points 
along x₁. 

On that face, there is a force pointing in direction x₃

So:
face normal → 1
force direction → 3



Why the diagonal terms look simpler (σ₁₁, σ₂₂, σ₃₃)

Now connect to intuition:

• σ₁₁: force in x₁ on face normal to x₁
• σ₂₂: force in x₂ on face normal to x₂
• σ₃₃: force in x₃ on face normal to x₃
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Translating σ₁₂ ↔ σₓᵧ (left cube → right matrix)

The cube uses numbers (1, 2, 3). The matrix uses letters (x, y, z).
They describe the same directions.

Mapping:

1 ↔ x
2 ↔ y
3 ↔ z

Every stress component answers the question:
Which face am I on, and which way am I pushing?



Isotropic stress (pressure)
Now imagine squeezing a rock equally from all directions: No preferred 
direction, no shear, no shape change, only volume change.

This part of the stress is called isotropic stress, or pressure.



Isotropic stress (pressure)

The trace it is the sum of the normal stresses
dividing by 3 gives the average

Key physical meaning:

Pressure is the part of stress that is the same in all directions.



Isotropic stress (pressure)

Why pressure acts only on normal components? This is crucial and often 
misunderstood. Pressure is directionless. It pushes perpendicular to surfaces. It 
does not create tangential forces. Therefore, it cannot produce shear.



Total / deviatoric / Effective stress: definition

Total stress = pressure (isotropic) + deviatoric stress (distortional). Total stress is the 
force per unit area acting inside a rock, including both normal stresses (pressure-like) 
and shear stresses (all components).

Pressure is the isotropic part of the total stress: the same compressive stress acting 
equally in all directions.

Deviatoric stress is the part of the total stress that remains after removing pressure. 
Deviatoric stress measures how much stress differs from pure pressure.

Effective stress is the part of the total stress carried by the solid rock framework when 
fluids are present. Effective stress is defined as the difference between total stress 
and pore fluid pressure.



Mohr circle
So far, we have described stress using 
components defined along the x and y 
axes. But a rock does not know what x
and y are.

But… what is the stress acting on a plane 
that is not aligned with x or y?



Mohr circle
So far, we have described stress using 
components defined along the x and y 
axes. But a rock does not know what x
and y are.

But… what is the stress acting on a plane 
that is not aligned with x or y?

Inside the rock, there are infinitely many planes at different angles. Pick one plane, tilted at some 
angle. On that plane, two things act:
- a normal stress (pushing into or pulling out of the plane)
- a shear stress (trying to make the two sides slide)

The question is: If I choose a plane at some angle, what are the values of normal stress and 
shear stress on that plane?



Mohr circle


